|
需要购买此门答案请加qq2762169544(微信:2762169544)
确定求积公式 的待定参数,使其代数精度尽量高,并确定其代数精度.(27分)
2、(26分)
叙述在数值运算中,误差分析的方法与原则是什么?
二、计算题(共47分)
1、(30分)
用列主元消去法解线性方程组
2、(17分)
已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式 及f (1,5)的近似值,取五位小数。
第二组:
一、 计算题(共100分)
1、 (25分)
用Gauss-Seidel迭代法求解线性方程组 = ,
取x(0)=(0,0,0)T,列表计算三次,保留三位小数。
2、 (26分)
用最小二乘法求形如 的经验公式拟合以下数据:
19 25 30 38
19.0 32.3 49.0 73.3
3、 (22分)
求A、B使求积公式 的代数精度尽量高,并求其代数精度;利用此公式求 (保留四位小数)。
4、 (27分)
已知
1 3 4 5
2 6 5 4
分别用拉格朗日插值法和牛顿插值法求 的三次插值多项式 ,并求 的近似值(保留四位小数)。
第三组:
一、 简述题(共50分)
1、 (28分)
已知方程组 ,其中
,
列出Jacobi迭代和Gauss-Seidel迭代法的分量形式。求出Jacobi迭代矩阵的谱半径。
2、 (22分)
用牛顿法求方程 在 之间的近似根
(1) 请指出为什么初值应取2?
(2) 请用牛顿法求出近似根,精确到0.0001。
二、计算题(29分)
用反幂法求矩阵 的对应于特征值 的特征向量
|
|