作业辅导网

 找回密码
 立即注册

QQ登录

只需一步,快速开始

作业辅导、毕业论文、学业辅导,请加qq2762169544(微信:2762169544)
查看: 1311|回复: 0
打印 上一主题 下一主题

天大《应用统计学》2017年6月考试期末大作业

[复制链接]

4万

主题

4万

帖子

4万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
48442
跳转到指定楼层
楼主
发表于 2017-6-14 22:31:26 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
需要购买此门答案请加qq2762169544(微信:2762169544)
应用统计学
要求:
一、        独立完成,下面已将五组题目列出,请任选一组题目作答,满分100分;
二、答题步骤:
1.        使用A4纸打印学院指定答题纸(答题纸请详见附件);
2.        在答题纸上使用黑色水笔按题目要求手写作答;答题纸上全部信息要求手写,包括中心、学号、姓名、科目、答题组数等基本信息和答题内容,请写明题型、题号;
三、提交方式:请将作答完成后的整页答题纸以图片形式依次粘贴在一个Word
    文档中上传(只粘贴部分内容的图片不给分),图片请保持正向、清晰;
1.        上传文件命名为“中心-学号-姓名-科目.doc”
2.        文件容量大小:不得超过10MB。
提示:未按要求作答题目的作业及雷同作业,成绩以0分记!

题目如下:
第一组:
一、        计算题(每小题25分,共50分)
1、某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下:
每包重量(克)        包数(包)f        x        xf        x-
(x- )2f

148—149        10        148.5        1485        -1.8        32.4
149—150        20        149.5        2990        -0.8        12.8
150—151        50        150.5        7525        0.2        2.0
151—152        20        151.5        3030        1.2        28.8
合计        100        --        15030        --        76.0
要求:(1)计算该样本每包重量的均值和标准差;
(2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626);
(3)在ɑ=0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364)(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96);
(写出公式、计算过程,标准差及置信上、下保留3位小数)

2、一种新型减肥方法自称其参加者在第一个星期平均能减去至少8磅体重.由40名使用了该种方法的个人组成一个随机样本,其减去的体重的样本均值为7磅,样本标准差为3.2磅.你对该减肥方法的结论是什么?(α=0.05,μα/2=1.96, μα=1.647)
二、        简答题(每小题25分,共50分)
1、        简述算术平均数、几何平均数、调和平均数的适用范围。
2、        假设检验的基本依据是什么?





第二组:
一、        计算题(每小题25分,共50分)
1、某地区社会商品零售额资料如下:
年份        零售额(亿元)y        t        t2        ty        t        t2        ty
1998        21.5        1        1        21.5        -5        25        -107.5
1999        22.0        2        4        44        -3        9        -66
2000        22.5        3        9        67.5        -1        1        -22.5
2001        23.0        4        16        92        1        1        23
2002        24.0        5        25        120        3        9        72
2003        25.0        6        36        150        5        25        125
合计        138.0        21        91        495        0        70        24
要求:1)用最小平方法配合直线趋势方程:
      2)预测2005年社会商品零售额。(a,b及零售额均保留三位小数,

2、某商业企业商品销售额1月、2月、3月分别为216,156,180.4万元,月初职工人数1月、2月、3月、4月分别为80,80,76,88人,试计算该企业1月、2月、3月各月平均每人商品销售额和第一季度平均每月人均销售额。(写出计算过程,结果精确到0.0001万元\人)
二、        简答题(每小题25分,共50分)
1、        表示数据分散程度的特征数有那几种?
2、 回归分析与相关分析的区别是什么?





第三组:
一、        计算题(每小题25分,共50分)
1、下表中的数据是主修信息系统专业并获得企业管理学士学位的学生,毕业后的月薪(用y表示)和他在校学习时的总评分(用x表示)的回归方程。
总评分        月薪/美元        总评分        月薪/美元
2.6        2800        3.2        3000
3.4        3100        3.5        3400
3.6        3500        2.9        3100

2、设总体X的概率密度函数为

其中 为未知参数, 是来自X的样本。
(1)试求 的极大似然估计量 ;
(2)试验证  是 的无偏估计量。

二、简答题(每小题25分,共50分)
1.        在统计假设检验中,如果轻易拒绝了原假设会造成严重后果时,应取显著性水平较大还是较小,为什么?
2.        加权算术平均数受哪几个因素的影响?若报告期与基期相比各组平均数没变,则总平均数的变动情况可能会怎样?请说明原因。





第四组:
一、        计算题(每小题25分,共50分)
1、某一汽车装配操作线完成时间的计划均值为2.2分钟。由于完成时间既受上一道装配操作线的影响,又影响到下一道装配操作线的生产,所以保持2.2分钟的标准是很重要的。一个随机样本由45项组成,其完成时间的样本均值为2.39分钟,样本标准差为0.20分钟。在0.05的显著性水平下检验操作线是否达到了2.2分钟的标准。
2、某商店为解决居民对某种商品的需要,调查了100户住户,得出每月每户平均需要量为10千克,样本方差为9。若这个商店供应10000户,求最少需要准备多少这种商品,才能以95%的概率满足需要?
二、简答题(每小题25分,共50分)
1.        解释相关关系的含义,说明相关关系的特点。
2.        为什么对总体均值进行估计时,样本容量越大,估计越精确?





第五组:
一、        计算题(每小题25分,共50分)
1、根据下表中Y与X两个变量的样本数据,建立Y与X的一元线性回归方程。
Y          X        5        10        15        20         
120        0        0        8        10        18
140        3        4        3        0        10
fx        3        4        11        10        28
2、某茶叶制造商声称其生产的一种包装茶叶平均每包重量不低于150克,已知茶叶包装重量服从正态分布,现从一批包装茶叶中随机抽取100包,检验结果如下:
每包重量(克)        包数(包)f        x        xf        x-
(x- )2f

148—149        10        148.5        1485        -1.8        32.4
149—150        20        149.5        2990        -0.8        12.8
150—151        50        150.5        7525        0.2        2.0
151—152        20        151.5        3030        1.2        28.8
合计        100        --        15030        --        76.0
要求:(1)计算该样本每包重量的均值和标准差;
(2)以99%的概率估计该批茶叶平均每包重量的置信区间(t0.005(99)≈2.626);
(3)在ɑ=0.01的显著性水平上检验该制造商的说法是否可信(t0.01(99)≈2.364)(4)以95%的概率对这批包装茶叶达到包重150克的比例作出区间估计(Z0.025=1.96);
(写出公式、计算过程,标准差及置信上、下保留3位小数)
二、简答题(每小题25分,共50分)
1.        区间估计与点估计的结果有何不同?
2.        统计调查的方法有那几种?


分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏
需要购买此门答案请加qq2762169544(微信:2762169544)
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

作业辅导、毕业论文、学业辅导,考试辅导资料,请加qq2762169544(微信:2762169544)

Archiver|手机版|小黑屋|作业辅导网  

GMT+8, 2024-11-23 07:49 , Processed in 0.042242 second(s), 29 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表